A Parallel-in-Time Gradient-Type Method for Discrete Time Optimal Control Problems

نویسندگان

  • Xiaodi Deng
  • Matthias Heinkenschloss
چکیده

This paper introduces and analyzes a new parallel-in-time gradient type method for the solution of convex linear-quadratic discrete-time optimal control (DTOC) problems. Each iteration of the classical gradient method requires the solution of the forward-in-time state equation followed by the solution of the backward-in-time adjoint equation to compute the gradient. To introduce parallelism, the time steps are split into N groups corresponding to time subintervals. At the time subinterval boundaries state and adjoint information from the previous iteration is used. On each time subinterval the forward-in-time state equation is solved, the backwardin-time adjoint equation is solved, gradient-type information is generated, and the control are updated. These computations can be performed in parallel across time subintervals. State and adjoint information at time subinterval boundaries is then exchanged with neighboring subintervals and the process is repeated. The resulting iteration can be interpreted as a so-called (2N−1)-part iteration scheme. Convergence of the new parallel-in-time gradient type method is proven for suitable step-sizes by showing that an associated block companion matrix has spectral radius less than one. The performance of the new method is demonstrated on a DTOC problem obtained from a discretization of a 3D parabolic optimal control problem. In this example nearly perfect speed-up is observed for moderate number of time subdomains. This speed-up due to time decomposition multiplies existing speed-up due to parallelization in the solution of state and adjoint equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New ILP Model for Identical Parallel-Machine Scheduling with Family Setup Times Minimizing the Total Weighted Flow Time by a Genetic Algorithm

This paper presents a novel, integer-linear programming (ILP) model for an identical parallel-machine scheduling problem with family setup times that minimizes the total weighted flow time (TWFT). Some researchers have addressed parallel-machine scheduling problems in the literature over the last three decades. However, the existing studies have been limited to the research of independent jobs,...

متن کامل

Discrete-time repetitive optimal control: Robotic manipulators

This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control law is in the class of torque-based control in which the joint torques are generated by permanen...

متن کامل

Optimal discrete-time control of robot manipulators in repetitive tasks

Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design an optimal discrete-time control of robot manipulator since the robot manipulator is highly nonlinear and uncertain. This paper presents a novel robust optimal discrete-time control of electrically driven robot manipulators for performing repetitive tasks. The robot performs repetit...

متن کامل

Fuzzy Programming for Parallel Machines Scheduling: Minimizing Weighted Tardiness/Earliness and Flow Time through Genetic Algorithm

Appropriate scheduling and sequencing of tasks on machines is one of the basic and significant problems that a shop or a factory manager encounters; this is why in recent decades extensive studies have been done on scheduling issues. One type of scheduling problems is just-in-time (JIT) scheduling and in this area, motivated by JIT manufacturing, this study investigates a mathematical model for...

متن کامل

Optimal Finite-time Control of Positive Linear Discrete-time Systems

This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016